Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
1.
J Ethnopharmacol ; 325: 117842, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38310987

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Acacia nilotica (L.) Wild. Ex Delilie is a shrub with significant ethnomedicinal stature. Therefore, in the undertaken study, its wound healing attributes are determined. AIM OF THE STUDY: The current study provided evidence of the traditional use of A. nilotica species and conferred A. nilotica bark extract as a potent candidate for wound healing agents. MATERIALS & METHODS: A. nilotica leaves extract (ANL-E); A. nilotica bark extract (ANB-E), and A. nilotica stem extract (ANS-E) were prepared using methanol-chloroform (1:1). Phytochemical analysis was performed using gallic acid equivalent (GAE) total phenolic content (TPC), quercetin equivalent (QE) total flavonoid content (TFC) assays and High-performance liquid chromatography (HPLC). In vitro antioxidant potential (free radical scavenging activity (FRSA), total antioxidant capacity (TAC), and ferric reducing antioxidant power (FRAP) assay), antibacterial activity (broth microdilution method) and hemolytic analysis was carried out. Wound healing proficiency of ANB-E was determined by wound excision model followed by estimating hydroxyproline content and endogenous antioxidant markers. RESULTS: Maximum phenolic and flavonoid content were depicted by ANB-E i.e., 50.9 ± 0.34 µg gallic acid equivalent/mg extract and 28.7 ± 0.13 µg quercetin equivalent/mg extract, respectively. HPLC analysis unraveled the presence of a significant amount of catechin in ANL-E, ANB-E and ANS-E (54.66 ± 0.02, 44.9 ± 0.004 and 31.36 ± 0.02 µg/mg extract) respectively. Highest percent free radical scavenging activity, total antioxidant capacity, and ferric reducing action power (i.e., 93.3 ± 0.42 %, 222.10 ± 0.76, and 222.86 ± 0.54 µg ascorbic acid equivalent/mg extract) were exhibited by ANB-E. Maximum antibacterial potential against Staphylococcus aureus was exhibited by ANB-E (MIC 12.5 µg/ml). Two of the extracts i.e., ANL-E and ANB-E were found biocompatible with less than 5 % hemolytic potential. Based upon findings of in vitro analysis, ANB-E (10, 5, and 2.5 % w/w, C1, C2, and C3, respectively) was selected for evaluating its in vivo wound healing potential. Maximum contraction of wound area and fastest epithelization i.e., 98 ± 0.05 % and 11.2 ± 1.00 (day) was exhibited by C1. Maximum hydroxyproline content, glutathione, catalase, and peroxidase were demonstrated by C1 i.e., 15.9 ± 0.52 µg/mg, 9.3 ± 0.17 mmol/mg, 7.2 ± 0.17 and 6.2 ± 0.14 U/mg, respectively. Maximal curbed lipid peroxidation i.e., 0.7 ± 0.15 mmol/mg was also depicted by C1. CONCLUSIONS: In a nutshell, the current investigation endorsed the wound healing potential of ANB-E suggesting it to be an excellent candidate for future studies.


Asunto(s)
Acacia , Antioxidantes , Antioxidantes/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/análisis , Acacia/química , Quercetina , Hidroxiprolina , Ácido Gálico , Antibacterianos/farmacología , Flavonoides/farmacología , Flavonoides/análisis , Radicales Libres
2.
Braz. j. biol ; 842024.
Artículo en Inglés | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469275

RESUMEN

Abstract Bacteria were isolated from samples of Fresh Apple juices from shops of three different localities of Lahore. Analysis of samples from Liberty, Anarkali and Yateem khana Markets show different levels of contamination. There were pathogenic and non-pathogenic bacteria in all samples and were identified by the morphological and biochemical tests. Most of the plasmids of pathogenic bacteria were 4kb in their molecular size. Ribotyping of 16S ribosomal RNA gene sequencing was done to confirm Helicobacter pylori strain and Gluconobacter oxydans. The highest sensitivity of 210mm was shown by Enterobacter sp. against Aztheromysine disk (15µg) while Micrococcus sp. was highly resistant against all of the Antibiotics applied. The antibiotic resistance of pathogenic bacteria was also checked against Ricinus communis plant's extracts, all isolated bacterial pathogens were resistant but only, E.coli was inhibited at 300µl of the extracts. Presence of pathogenic bacteria in Apple juice samples was due to contamination of sewage water in drinking water while some of these pathogenic bacteria came from Apple's tree and other from store houses of fruits.


Resumo As bactérias foram isoladas de amostras de suco de maçã fresco de lojas de três diferentes localidades de Lahore. A análise de amostras dos mercados Liberty, Anarkali e Yateem khana mostram diferentes níveis de contaminação. Havia bactérias patogênicas e não patogênicas em todas as amostras e foram identificadas pelos testes morfológicos e bioquímicos. A maioria dos plasmídeos de bactérias patogênicas tinha 4 kb em seu tamanho molecular. A ribotipagem do sequenciamento do gene do RNA ribossômico 16S foi realizada para confirmar a cepa de Helicobacter pylori e Gluconobacter oxydans. A maior sensibilidade de 210 mm foi mostrada por Enterobacter sp. contra disco de azteromisina (15µg) enquanto Micrococcus sp. foi altamente resistente a todos os antibióticos aplicados. A resistência a antibióticos de bactérias patogênicas também foi verificada contra extratos de plantas de Ricinus communis, todos os patógenos bacterianos isolados foram resistentes, mas apenas E. coli foi inibida em 300µl dos extratos. A presença de bactérias patogênicas nas amostras de suco de maçã deveu-se à contaminação da água de esgoto na água potável, enquanto algumas dessas bactérias patogênicas vieram da árvore da maçã e outras de armazéns de frutas.

3.
ACS Mater Lett ; 5(9): 2408-2421, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37680545

RESUMEN

High power conversion efficiencies (PCE), low energy payback time (EPBT), and low manufacturing costs render perovskite solar cells (PSCs) competitive; however, a relatively low operational stability impedes their large-scale deployment. In addition, state-of-the-art PSCs are made of expensive materials, including the organic hole transport materials (HTMs) and the noble metals used as the charge collection electrode, which induce degradation in PSCs. Thus, developing inexpensive alternatives is crucial to fostering the transition from academic research to industrial development. Combining a carbon-based electrode with an inorganic HTM has shown the highest potential and should replace noble metals and organic HTMs. In this review, we illustrate the incorporation of a carbon layer as a back contact instead of noble metals and inorganic HTMs instead of organic ones as two cornerstones for achieving optimal stability and economic viability for PSCs. We discuss the primary considerations for the selection of the absorbing layer as well as the electron-transporting layer to be compatible with the champion designs and ultimate architecture for single-junction PSCs. More studies regarding the long-term stability are still required. Using the recommended device architecture presented in this work would pave the way toward constructing low-cost and stable PSCs.

4.
ACS Omega ; 8(20): 17337-17349, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37251151

RESUMEN

Metal halide perovskites (MHPs) are exceptional semiconductors best known for their intriguing properties, such as high absorption coefficients, tunable bandgaps, excellent charge transport, and high luminescence yields. Among various MHPs, all-inorganic perovskites exhibit benefits over hybrid compositions. Notably, critical properties, including chemical and structural stability, could be improved by employing organic-cation-free MHPs in optoelectronic devices such as solar cells and light-emitting devices (LEDs). Due to their enticing features, including spectral tunability over the entire visible spectrum with high color purity, all-inorganic perovskites have become a focus of intense research for LEDs. This Review explores and discusses the application of all-inorganic CsPbX3 nanocrystals (NCs) in developing blue and white LEDs. We discuss the challenges perovskite-based LEDs (PLEDs) face and the potential strategies adopted to establish state-of-the-art synthetic routes to obtain rational control over dimensions and shape symmetry without compromising the optoelectronic properties. Finally, we emphasize the significance of matching the driving currents of different LED chips and balancing the aging and temperature of individual chips to realize efficient, uniform, and stable white electroluminescence.

5.
Braz. j. biol ; 832023.
Artículo en Inglés | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469206

RESUMEN

Abstract Vanillin is the major component which is responsible for flavor and aroma of vanilla extract and is produced by 3 ways: natural extraction from vanilla plant, chemical synthesis and from microbial transformation. Current research was aimed to study bacterial production of vanillin from native natural sources including sewage and soil from industrial areas. The main objective was vanillin bio-production by isolating bacteria from these native sources. Also to adapt methodologies to improve vanillin production by optimized fermentation media and growth conditions. 47 soil and 13 sewage samples were collected from different industrial regions of Lahore, Gujranwala, Faisalabad and Kasur. 67.7% bacterial isolates produced vanillin and 32.3% were non-producers. From these 279 producers, 4 bacterial isolates selected as significant producers were; A3, A4, A7 and A10. These isolates were identified by ribotyping as A3 Pseudomonas fluorescence (KF408302), A4 Enterococcus faecium (KT356807), A7 Alcaligenes faecalis (MW422815) and A10 Bacillus subtilis (KT962919). Vanillin producers were further tested for improved production of vanillin and were grown in different fermentation media under optimized growth conditions for enhanced production of vanillin. The fermentation media (FM) were; clove oil based, rice bran waste (residues oil) based, wheat bran based and modified isoeugenol based. In FM5, FM21, FM22, FM23, FM24, FM30, FM31, FM32, FM34, FM35, FM36, and FM37, the selected 4 bacterial strains produced significant amounts of vanillin. A10 B. subtilis produced maximum amount of vanillin. This strain produced 17.3 g/L vanillin in FM36. Cost of this fermentation medium 36 was 131.5 rupees/L. This fermentation medium was modified isoeugenol based medium with 1% of isoeugenol and 2.5 g/L soybean meal. ech gene was amplified in A3 P. fluorescence using ech specific primers. As vanillin use as flavor has increased tremendously, the bioproduction of vanillin must be focused.


Resumo A vanilina é o principal componente responsável pelo sabor e aroma do extrato de baunilha e é produzida de três formas: extração natural da planta da baunilha, síntese química e transformação microbiana. A pesquisa atual teve como objetivo estudar a produção bacteriana de vanilina a partir de fontes naturais nativas, incluindo esgoto e solo de áreas industriais. O objetivo principal era a bioprodução de vanilina por meio do isolamento de bactérias dessas fontes nativas. Também para adaptar metodologias para melhorar a produção de vanilina por meio de fermentação otimizada e condições de crescimento. Foram coletadas 47 amostras de solo e 13 de esgoto de diferentes regiões industriais de Lahore, Gujranwala, Faisalabad e Kasur; 67,7% dos isolados bacterianos produziram vanilina e 32,3% eram não produtores. Desses 279 produtores, 4 isolados bacterianos selecionados como produtores significativos foram: A3, A4, A7 e A10. Esses isolados foram identificados por ribotipagem como fluorescência A3 Pseudomonas (KF408302), A4 Enterococcus faecium (KT356807), A7 Alcaligenes faecalis (MW422815) e A10 Bacillus subtilis (KT962919). Os produtores de vanilina foram posteriormente testados para produção aprimorada de vanilina e foram cultivados em diferentes meios de fermentação sob condições de crescimento otimizadas para produção aprimorada de vanilina. Os meios de fermentação (FM) foram: à base de óleo de cravo, à base de resíduos de farelo de arroz (resíduos de óleo), à base de farelo de trigo e à base de isoeugenol modificado. Em FM5, FM21, FM22, FM23, FM24, FM30, FM31, FM32, FM34, FM35, FM36 e FM37, as 4 cepas bacterianas selecionadas produziram quantidades significativas de vanilina. A10 B. subtilis produziu quantidade máxima de vanilina. Essa cepa produziu 17,3 g / L de vanilina em FM36. O custo desse meio de fermentação 36 foi de 131,5 rúpias / L. Esse meio de fermentação foi um meio à base de isoeugenol modificado com 1% de isoeugenol e 2,5 g / L de farelo de soja. O gene ech foi amplificado em A3 P. fluorescence usando primers específicos para ech. Como o uso da vanilina como sabor aumentou tremendamente, a bioprodução da vanilina deve ser focada.

6.
Braz. j. biol ; 83: e250550, 2023. tab, graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1345536

RESUMEN

Abstract Vanillin is the major component which is responsible for flavor and aroma of vanilla extract and is produced by 3 ways: natural extraction from vanilla plant, chemical synthesis and from microbial transformation. Current research was aimed to study bacterial production of vanillin from native natural sources including sewage and soil from industrial areas. The main objective was vanillin bio-production by isolating bacteria from these native sources. Also to adapt methodologies to improve vanillin production by optimized fermentation media and growth conditions. 47 soil and 13 sewage samples were collected from different industrial regions of Lahore, Gujranwala, Faisalabad and Kasur. 67.7% bacterial isolates produced vanillin and 32.3% were non-producers. From these 279 producers, 4 bacterial isolates selected as significant producers were; A3, A4, A7 and A10. These isolates were identified by ribotyping as A3 Pseudomonas fluorescence (KF408302), A4 Enterococcus faecium (KT356807), A7 Alcaligenes faecalis (MW422815) and A10 Bacillus subtilis (KT962919). Vanillin producers were further tested for improved production of vanillin and were grown in different fermentation media under optimized growth conditions for enhanced production of vanillin. The fermentation media (FM) were; clove oil based, rice bran waste (residues oil) based, wheat bran based and modified isoeugenol based. In FM5, FM21, FM22, FM23, FM24, FM30, FM31, FM32, FM34, FM35, FM36, and FM37, the selected 4 bacterial strains produced significant amounts of vanillin. A10 B. subtilis produced maximum amount of vanillin. This strain produced 17.3 g/L vanillin in FM36. Cost of this fermentation medium 36 was 131.5 rupees/L. This fermentation medium was modified isoeugenol based medium with 1% of isoeugenol and 2.5 g/L soybean meal. ech gene was amplified in A3 P. fluorescence using ech specific primers. As vanillin use as flavor has increased tremendously, the bioproduction of vanillin must be focused.


Resumo A vanilina é o principal componente responsável pelo sabor e aroma do extrato de baunilha e é produzida de três formas: extração natural da planta da baunilha, síntese química e transformação microbiana. A pesquisa atual teve como objetivo estudar a produção bacteriana de vanilina a partir de fontes naturais nativas, incluindo esgoto e solo de áreas industriais. O objetivo principal era a bioprodução de vanilina por meio do isolamento de bactérias dessas fontes nativas. Também para adaptar metodologias para melhorar a produção de vanilina por meio de fermentação otimizada e condições de crescimento. Foram coletadas 47 amostras de solo e 13 de esgoto de diferentes regiões industriais de Lahore, Gujranwala, Faisalabad e Kasur; 67,7% dos isolados bacterianos produziram vanilina e 32,3% eram não produtores. Desses 279 produtores, 4 isolados bacterianos selecionados como produtores significativos foram: A3, A4, A7 e A10. Esses isolados foram identificados por ribotipagem como fluorescência A3 Pseudomonas (KF408302), A4 Enterococcus faecium (KT356807), A7 Alcaligenes faecalis (MW422815) e A10 Bacillus subtilis (KT962919). Os produtores de vanilina foram posteriormente testados para produção aprimorada de vanilina e foram cultivados em diferentes meios de fermentação sob condições de crescimento otimizadas para produção aprimorada de vanilina. Os meios de fermentação (FM) foram: à base de óleo de cravo, à base de resíduos de farelo de arroz (resíduos de óleo), à base de farelo de trigo e à base de isoeugenol modificado. Em FM5, FM21, FM22, FM23, FM24, FM30, FM31, FM32, FM34, FM35, FM36 e FM37, as 4 cepas bacterianas selecionadas produziram quantidades significativas de vanilina. A10 B. subtilis produziu quantidade máxima de vanilina. Essa cepa produziu 17,3 g / L de vanilina em FM36. O custo desse meio de fermentação 36 foi de 131,5 rúpias / L. Esse meio de fermentação foi um meio à base de isoeugenol modificado com 1% de isoeugenol e 2,5 g / L de farelo de soja. O gene ech foi amplificado em A3 P. fluorescence usando primers específicos para ech. Como o uso da vanilina como sabor aumentou tremendamente, a bioprodução da vanilina deve ser focada.


Asunto(s)
Benzaldehídos/metabolismo , Aromatizantes/metabolismo , Bacillus subtilis/metabolismo , Microbiología Industrial , Pseudomonas fluorescens/metabolismo , Enterococcus faecium/metabolismo , Medios de Cultivo , Alcaligenes faecalis/metabolismo , Fermentación
7.
Nanomedicine (Lond) ; 17(20): 1429-1447, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36301316

RESUMEN

Aim: To develop and evaluate detergent-free, triple-drug-loaded, hyaluronate-coated elastic nanovesicles (H-ENVs) for the topical treatment of cutaneous leishmaniasis. Materials & methods: H-ENVs were developed and evaluated for vesicle size, entrapment efficiency, skin permeation and antileishmanial potential. Results: A 15.7 and 28.6% decrease in the cytotoxicity of paromomycin and amphotericin B, respectively, was observed in detergent-free ENVs compared with conventional ENVs. H-ENVs improved the efficacy of paromomycin against promastigote and amastigote models of leishmaniasis by 4- and 7.5-fold, respectively. In vivo investigation of H-ENVs demonstrated efficient topical management of cutaneous leishmaniasis. Conclusion: The results indicate the potential of H-ENVs as a safe topical treatment choice for cutaneous leishmaniasis.


Application of topical gel is an attractive alternative to oral or intravenous administration of drugs and is likely to deliver a higher dose of the drug to the target site with only rare systemic adverse effects. Nanotechnology-based topical drug delivery is an attractive aspect of pharmaceutical sciences that expresses interest in the topical treatment of cutaneous leishmaniasis. The authors' research focuses on the development and evaluation of novel multidrug-loaded, detergent-free nanovesicles for the simple and effective topical treatment of cutaneous leishmaniasis.


Asunto(s)
Antiprotozoarios , Leishmaniasis Cutánea , Humanos , Paromomicina , Leishmaniasis Cutánea/tratamiento farmacológico , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Anfotericina B/farmacología , Anfotericina B/uso terapéutico , Administración Tópica
8.
Sci Adv ; 8(35): eabo3733, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36054361

RESUMEN

There exists a considerable density of interaggregate grain boundaries (GBs) and intra-aggregate GBs in polycrystalline perovskites. Mitigation of intra-aggregate GBs is equally notable to that of interaggregate GBs as intra-aggregate GBs can also cause detrimental effects on the photovoltaic performances of perovskite solar cells (PSCs). Here, we demonstrate full-scale GB mitigation ranging from nanoscale intra-aggregate to submicron-scale interaggregate GBs, by modulating the crystallization kinetics using a judiciously designed brominated arylamine trimer. The optimized GB-mitigated perovskite films exhibit reduced nonradiative recombination, and their corresponding mesostructured PSCs show substantially enhanced device efficiency and long-term stability under illumination, humidity, or heat stress. The versatility of our strategy is also verified upon applying it to different categories of PSCs. Our discovery not only specifies a rarely addressed perspective concerning fundamental studies of perovskites at nanoscale but also opens a route to obtain high-quality solution-processed polycrystalline perovskites for high-performance optoelectronic devices.

9.
Lett Appl Microbiol ; 75(2): 293-307, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34398478

RESUMEN

Colletotrichum lindemuthianum is a hemibiotrophic fungal pathogen that causes bean anthracnose and it is rated among the top 10 important diseases infecting beans. Currently our knowledge on molecular mechanisms underlying C. lindemuthianum pathogenesis is limited. About five pathogenicity genes have been identified in C. lindemuthianum using Restricted Enzyme Mediated Integration and the transformation using Agroinfection has not been optimized. In this study, a series of experiments were conducted to optimize the key parameters affecting the Agrobacterium tumefaciens-mediated transformation for C. lindemuthianum. The transformation efficiency increased with increase in spore concentration and co-cultivation time. However, the optimum conditions that yielded significant number of transformants were 106 ml-1 spore concentration, co-cultivation time of 72 h, incubation at 25°C and using a cellulose membrane filter for the co-cultivation. The optimized protocol resulted in establishment of large mutant library (2400). A few mutants were melanin deficient and a few were unable to produce conidia. To determine the altered pathogenicity, two new approaches such as detached leaf and twig techniques proved reliable and require fewer resources to screen the large mutant libraries in a short time. Among the 1200 transformants tested for virulence, 90% transformants were pathogenically similar to wild type (race 2047), 96 and 24 were reduced and impaired, respectively. The altered avirulent transformants can prove vital for understanding the missing link between growth and developmental stages of pathogen with virulence. This platform will help to develop strategies to determine the potential pathogenicity genes and to decipher molecular mechanisms of host-pathogen interactions in more detail.


Asunto(s)
Colletotrichum , Fabaceae , Agrobacterium tumefaciens/genética , Colletotrichum/genética , Fabaceae/microbiología , Enfermedades de las Plantas/microbiología , Esporas Fúngicas/genética , Virulencia/genética
10.
Nanomedicine ; 40: 102490, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34748957

RESUMEN

The basic aim of the study was to develop and evaluate the triple drug loaded cationic nano-vesicles (cNVs), where miltefosine was used as a replacement of surfactant (apart from its anti-leishmanial role), in addition to meglumine antimoniate (MAM) and imiquimod (Imq), as a combination therapy for the topical treatment of cutaneous leishmaniasis (CL). The optimized formulation was nano-sized (86.2 ±â€¯2.7 nm) with high entrapment efficiency (63.8 ±â€¯2.1% (MAM) and 81.4 ±â€¯2.3% (Imq)). In-vivo skin irritation assay showed reduced irritation potential and a decrease in the cytotoxicity of cNVs as compared to conventional NVs (having sodium deoxycholate as a surfactant). A synergistic interaction between drugs was observed against intracellular amastigotes, whereas the in-vivo antileishmanial study presented a significant reduction in the parasitic burden. The results suggested the potential of surfactant free, triple drug loaded cNVs as an efficient vehicle for the safe topical treatment of CL.


Asunto(s)
Antiprotozoarios , Leishmania , Leishmaniasis Cutánea , Administración Tópica , Antiprotozoarios/farmacología , Humanos , Leishmaniasis Cutánea/tratamiento farmacológico , Tensoactivos
11.
Braz J Biol ; 84: e253203, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34932677

RESUMEN

Bacteria were isolated from samples of Fresh Apple juices from shops of three different localities of Lahore. Analysis of samples from Liberty, Anarkali and Yateem khana Markets show different levels of contamination. There were pathogenic and non-pathogenic bacteria in all samples and were identified by the morphological and biochemical tests. Most of the plasmids of pathogenic bacteria were 4kb in their molecular size. Ribotyping of 16S ribosomal RNA gene sequencing was done to confirm Helicobacter pylori strain and Gluconobacter oxydans. The highest sensitivity of 210mm was shown by Enterobacter sp. against Aztheromysine disk (15µg) while Micrococcus sp. was highly resistant against all of the Antibiotics applied. The antibiotic resistance of pathogenic bacteria was also checked against Ricinus communis plant's extracts, all isolated bacterial pathogens were resistant but only, E.coli was inhibited at 300µl of the extracts. Presence of pathogenic bacteria in Apple juice samples was due to contamination of sewage water in drinking water while some of these pathogenic bacteria came from Apple's tree and other from store houses of fruits.


Asunto(s)
Antibacterianos , Gluconobacter oxydans , Helicobacter pylori , Extractos Vegetales , Ricinus/química , Antibacterianos/farmacología , Jugos de Frutas y Vegetales/microbiología , Gluconobacter oxydans/efectos de los fármacos , Helicobacter pylori/efectos de los fármacos , Malus/microbiología , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/farmacología
12.
Front Genet ; 12: 735489, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34759957

RESUMEN

Plant pathology has been revolutionized by the emergence and intervention of next-generation sequencing technologies (NGS) which provide a fast, cost-effective, and reliable diagnostic for any class of pathogens. NGS has made tremendous advancements in the area of research and diagnostics of plant infecting viromes and has bridged plant virology with other advanced research fields like genome editing technologies. NGS in a broader perspective holds the potential for plant health improvement by diagnosing and mitigating the new or unusual symptoms caused by novel/unidentified viruses. CRISPR-based genome editing technologies can enable rapid engineering of efficient viral/viroid resistance by directly targeting specific nucleotide sites of plant viruses and viroids. Critical genes such as eIf (iso) 4E or eIF4E have been targeted via the CRISPR platform to produce plants resistant to single-stranded RNA (ssRNA) viruses. CRISPR/Cas-based multi-target DNA or RNA tests can be used for rapid and accurate diagnostic assays for plant viruses and viroids. Integrating NGS with CRISPR-based genome editing technologies may lead to a paradigm shift in combating deadly disease-causing plant viruses/viroids at the genomic level. Furthermore, the newly discovered CRISPR/Cas13 system has unprecedented potential in plant viroid diagnostics and interference. In this review, we have highlighted the application and importance of sequencing technologies on covering the viral genomes for precise modulations. This review also provides a snapshot vision of emerging developments in NGS technologies for the characterization of plant viruses and their potential utilities, advantages, and limitations in plant viral diagnostics. Furthermore, some of the notable advances like novel virus-inducible CRISPR/Cas9 system that confers virus resistance with no off-target effects have been discussed.

13.
Braz J Biol ; 83: e250550, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34730714

RESUMEN

Vanillin is the major component which is responsible for flavor and aroma of vanilla extract and is produced by 3 ways: natural extraction from vanilla plant, chemical synthesis and from microbial transformation. Current research was aimed to study bacterial production of vanillin from native natural sources including sewage and soil from industrial areas. The main objective was vanillin bio-production by isolating bacteria from these native sources. Also to adapt methodologies to improve vanillin production by optimized fermentation media and growth conditions. 47 soil and 13 sewage samples were collected from different industrial regions of Lahore, Gujranwala, Faisalabad and Kasur. 67.7% bacterial isolates produced vanillin and 32.3% were non-producers. From these 279 producers, 4 bacterial isolates selected as significant producers were; A3, A4, A7 and A10. These isolates were identified by ribotyping as A3 Pseudomonas fluorescence (KF408302), A4 Enterococcus faecium (KT356807), A7 Alcaligenes faecalis (MW422815) and A10 Bacillus subtilis (KT962919). Vanillin producers were further tested for improved production of vanillin and were grown in different fermentation media under optimized growth conditions for enhanced production of vanillin. The fermentation media (FM) were; clove oil based, rice bran waste (residues oil) based, wheat bran based and modified isoeugenol based. In FM5, FM21, FM22, FM23, FM24, FM30, FM31, FM32, FM34, FM35, FM36, and FM37, the selected 4 bacterial strains produced significant amounts of vanillin. A10 B. subtilis produced maximum amount of vanillin. This strain produced 17.3 g/L vanillin in FM36. Cost of this fermentation medium 36 was 131.5 rupees/L. This fermentation medium was modified isoeugenol based medium with 1% of isoeugenol and 2.5 g/L soybean meal. ech gene was amplified in A3 P. fluorescence using ech specific primers. As vanillin use as flavor has increased tremendously, the bioproduction of vanillin must be focused.


Asunto(s)
Benzaldehídos , Aromatizantes , Alcaligenes faecalis/metabolismo , Bacillus subtilis/metabolismo , Benzaldehídos/metabolismo , Medios de Cultivo , Enterococcus faecium/metabolismo , Fermentación , Aromatizantes/metabolismo , Microbiología Industrial , Pseudomonas fluorescens/metabolismo
14.
Sci Adv ; 7(17)2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33893100

RESUMEN

It is well established that the lack of understanding the crystallization process in a two-step sequential deposition has a direct impact on efficiency, stability, and reproducibility of perovskite solar cells. Here, we try to understand the solid-solid phase transition occurring during the two-step sequential deposition of methylammonium lead iodide and formamidinium lead iodide. Using metadynamics, x-ray diffraction, and Raman spectroscopy, we reveal the microscopic details of this process. We find that the formation of perovskite proceeds through intermediate structures and report polymorphs found for methylammonium lead iodide and formamidinium lead iodide. From simulations, we discover a possible crystallization pathway for the highly efficient metastable α phase of formamidinium lead iodide. Guided by these simulations, we perform experiments that result in the low-temperature crystallization of phase-pure α-formamidinium lead iodide.

15.
Mol Biol Rep ; 48(4): 3173-3184, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33891273

RESUMEN

Bakanae is the emerging disease threating the rice cultivation globally. Yield reduction of 4-70% is recorded in different parts of the world. A total of 119 Fusarium isolates were collected from rice plants at different geographical locations and seeds of different rice cultivars. The isolates were evaluated for morphological, biochemical and pathogenic diversity. The amplification of TEF-1α gene was carried out for exploring the species spectrum associated with the cultivated and pre-released rice varieties. The production of gibberellin varied from 0.53 to 2.26 µg/25 ml, while as that of Indole acetic acid varied from 0.60 to 3.15 µg/25 ml among the Fusarium isolates. The phylogenetic analysis identified 5 different species of the genus Fusarium viz. Fusarium fujikuroi, F. proliferatum, F. equiseti, F.oxysporum and F. persicinum after nucleotide blasting in NCBI. Only two Fusarium spp. F. fujikuroi and F. proliferatum were found to be pathogenic under virulence assays of the isolates. The isolates showed a considerable variation in morphological and pathogenic characters. The isolates were divided into different groups based on morphology and pathogenicity tests. The isolates showed a considerable variation in morphology, phytohormone profile and virulence indicative of population diversity. Three species F. equiseti, F.oxysporum and F. persicinum which have not been reported as pathogens of rice in India were found to be associated with bakanae disease of rice, however their pathogenicity could not be established.


Asunto(s)
Fusarium , Oryza/microbiología , Reguladores del Crecimiento de las Plantas/biosíntesis , Fusarium/citología , Fusarium/genética , Fusarium/metabolismo , Fusarium/patogenicidad , Genes Fúngicos , Giberelinas/metabolismo , India , Filogenia
16.
J Phys Chem Lett ; 12(10): 2699-2704, 2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33703902

RESUMEN

CsPbBr3 has received wide attention due to its superior emission yield and better thermal stability compared to other organic-inorganic lead halide perovskites. In this study, through an interplay of theory and experiments, we investigate the molecular origin of the asymmetric low-temperature photoluminescence spectra of CsPbBr3. We conclude that the origin of this phenomenon lies in a local dipole moment (and the induced Stark effect) due to the preferential localization of Cs+ in either of two off-center positions of the empty space between the surrounding PbBr6 octahedra. With increasing temperature, Cs+ ions are gradually occupying positions closer and closer to the center of the cavities. The gradual loss of ordering in the Cs+ position with increasing temperature is the driving force for the formation of tetragonal-like arrangements within the orthorhombic lattice.

17.
Planta ; 253(2): 61, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33538903

RESUMEN

MAIN CONCLUSION: During the process of plant domestication, the selection and traditional breeding for desired characters such as flavor, juiciness and nutritional value of fruits, probably have resulted in gain or loss of specialized metabolites contributing to these traits. Their appearance in fruits is likely due to the acquisition of novel and specialized metabolic pathways and their regulation, driven by systematic molecular evolutionary events facilitated by traditional breeding. Plants change their armory of specialized metabolism to adapt and survive in diverse ecosystems. This may occur through molecular evolutionary events, such as single nucleotide polymorphism, gene duplication and transposition, leading to convergent or divergent evolution of biosynthetic pathways producing such specialized metabolites. Breeding and selection for improved specific and desired traits (fruit size, color, taste, flavor, etc.) in fruit crops through conventional breeding approaches may further alter content and profile of specialized metabolites. Biosynthetic routes of these metabolites have been studied in various plants. Here, we explore the influence of plant domestication and breeding processes on the selection of biosynthetic pathways of favorable specialized metabolites in fruit crops. An orderly clustered arrangement of genes associated with their production is observed in many fruit crops. We further analyzed selection-based acquisition of specialized metabolic pathways comparing first the metabolic profiles and genes involved in their biosynthesis, followed by the genomic organization of such genes between wild and domesticated horticultural crops. Domestication of crop plants favored the acquisition and retention of metabolic pathways that enhanced the fruit value while eliminated those which produced toxic or unfavorable metabolites. Interestingly, unintentional reorganization of complex metabolic pathways by selection and traditional breeding processes has endowed us with flavorful, juicy and nutritionally rich fruits.


Asunto(s)
Productos Agrícolas/metabolismo , Domesticación , Frutas , Redes y Vías Metabólicas , Fitomejoramiento , Productos Agrícolas/genética , Ecosistema , Frutas/genética , Frutas/metabolismo
18.
RSC Adv ; 11(35): 21702-21715, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35478795

RESUMEN

We report the synthesis and characterization of graphene functionalized with iron (Fe3+) oxide (G-Fe3O4) nanohybrids for radio-frequency magnetic hyperthermia application. We adopted the wet chemical procedure, using various contents of Fe3O4 (magnetite) from 0-100% for making two-dimensional graphene-Fe3O4 nanohybrids. The homogeneous dispersal of Fe3O4 nanoparticles decorated on the graphene surface combined with their biocompatibility and high thermal conductivity make them an excellent material for magnetic hyperthermia. The morphological and magnetic properties of the nanohybrids were studied using scanning electron microscopy (SEM) and a vibrating sample magnetometer (VSM), respectively. The smart magnetic platforms were exposed to an alternating current (AC) magnetic field of 633 kHz and of strength 9.1 mT for studying their hyperthermic performance. The localized antitumor effects were investigated with artificial neural network modeling. A neural net time-series model was developed for the assessment of the best nanohybrid composition to serve the purpose with an accuracy close to 100%. Six Nonlinear Autoregressive with External Input (NARX) models were obtained, one for each of the components. The assessment of the accuracy of the predicted results has been done on the basis of Mean Squared Error (MSE). The highest Mean Squared Error value was obtained for the nanohybrid containing 45% magnetite and 55% graphene (F45G55) in the training phase i.e., 0.44703, which is where the model achieved optimal results after 71 epochs. The F45G55 nanohybrid was found to be the best for hyperthermia applications in low dosage with the highest specific absorption rate (SAR) and mean squared error values.

19.
J Phys Chem Lett ; 11(23): 10188-10195, 2020 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-33205977

RESUMEN

Its lower bandgap makes formamidinium lead iodide (FAPbI3) a more suitable candidate for single-junction solar cells than pure methylammonium lead iodide (MAPbI3). However, its structural and thermodynamic stability is improved by introducing a significant amount of MA and bromide, both of which increase the bandgap and amplify trade-off between the photocurrent and photovoltage. Here, we simultaneously stabilized FAPbI3 into a cubic lattice and minimized the formation of photoinactive phases such as hexagonal FAPbI3 and PbI2 by introducing 5% MAPbBr3, as revealed by synchrotron X-ray scattering. We were able to stabilize the composition (FA0.95MA0.05Cs0.05)Pb(I0.95Br0.05)3, which exhibits a minimal trade-off between the photocurrent and photovoltage. This material shows low energetic disorder and improved charge-carrier dynamics as revealed by photothermal deflection spectroscopy (PDS) and transient absorption spectroscopy (TAS), respectively. This allowed the fabrication of operationally stable perovskite solar cells yielding reproducible efficiencies approaching 22%.

20.
Mol Biotechnol ; 62(10): 508-520, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32844356

RESUMEN

Globally farmers have difficulty in extending the shelf-life of the tropical fruits due to their perishable nature. The present study aimed to assess the effect of hexanal nano-formulation treatment (NFT) on the shelf-life of Alphonso mango. Further, volatilomics was performed to explore the molecular basis of such effect. Untreated and treated fruits were sampled starting from 5th to 21st day after NFT at an interval of 4 days. Moderate changes in visual and digital colour parameters were evident from the intact and dissected fruits of NFT set compared to untreated fruits. Biochemical assays affirmed the phenotypic differences with significant changes in the colour imparting compounds like carotenoids and anthocyanins among them. Further, gas chromatography-mass spectrometry analysis revealed significant qualitative and quantitative variations in the different classes of compounds like lactones, furanones, esters, aldehydes and alcohols. Some of the key metabolites showed differential modulations among the NFT and untreated fruit sets indicating their potential role in various processes, which ultimately might have resulted in delayed ripening of the mango. Overall, this study has demonstrated the beneficial effect of hexanal and identified important metabolites with the enhanced shelf-life in Alphonso that could be useful for farmers and mango-based food/flavour industries.


Asunto(s)
Almacenamiento de Alimentos , Frutas/metabolismo , Mangifera/metabolismo , Metaboloma , Análisis por Conglomerados , Color , Nanotecnología , Fenotipo , Pigmentación , Análisis de Componente Principal , Espectrofotometría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA